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In recent years there has been considerable interest in the use of the Fast Eourier Transform 
Algorithm (FFT) to calculate the Discrete Fourier Transform (DFT), allowing-in 
particular-for the fast computation of convolution products of finite sequences of numbers. 
Generalizations of the DFT and FFT to dimensions n = 2,3,... are immediate, but their use in 
dimensions n > 1 to (approximately) calculate convolution integrals appears quite limited, 
even though integral equations involving multi-dimensional convolutions are common in 
physics. Most likely this situation is due to the fact that the quadrature formulas for approx- 
imating multi-dimensional convolution integrals obtained via the DFT are quite poor if n > 1. 
It is shown how the FFT can be used to calculate each of a whole class of newly defined 
transforms, the LPT or Lattice Point Transforms (hence, each LPT has a “fast algorithm” 
implementation). In a manner analogous to the n-dimensional D*FT, each n-dimensional LPT 
allows one to (approximately) compute n-dimensional convolution integrals. Some of the 
quadrature formulas so obtained are exceptionally good. Such quadrature formulas 
correspond to LPTs generated by “good lattice points.” The cataloguing of “good lattice 
points” represents an area of research in present day multi-dimensional integration theory. 
Where N, denotes the number of points of functional evaluation used, the expected error of 
the quadrature formulas arising through the use of the DFT is 0(N;““), while the expected 
error of the quadrature formulas arising through the use of LPTs generated by “good lattice 
points” is only slightly larger than O(N;‘). Applications to integral equations are discussed. 

I. INTRODUCTION 

We denote by Li the set of points in the n-dimensional unit cube having coor- 
dinates (j, N- l,..., j,N-‘), where N > 1 is an integer and j, ,..., j, each independently 
assume the values 0, I,..., N- 1. The n-dimensional Discrete Fourier Transform 
(DFT) is a linear transformation (on the vector space of all complex functions f 
defined on Li) which transforms each f into % given by 

f(Z) = N-” C f(J) exp(2rciNy. 2). 
jkL,!J 

(1) 

The FFT (Fast Fourier Transform) is an algorithm which permits the calculation 
of (1) in O(N” log N) steps if N is a power of 2. The implied constant is independent 
of iV. The inverse DFT is given by 

f(7) = C f(2) exp(-2zzXX . y), 
TGL; 

382 
OOZI-9991/81/080382-14$02.00/O 
Copyright 0 1981 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

(2) 



APPROXIMATING CONVOLUTION PRQDUCTS J&3 

and it can be calculated in O(W log N) steps also. (Note N’&Z) = f(-2).) As is well 
known (and will be shown later) one may use the FFT to calculate the ‘~onvoI~ti~~ 
product, fi * f2, of any two complex functions f, and f2 defined on ~5; in O(N” log N) 
steps, where 

We shall show how fi x f2 arises naturally in the study of numerical solutions to 
certain integral equations; we shall see the drawbacks of usingf, * J2 to approximate 
numerically convolution integrals; and we shall produce a new class of transfor- 
mations (each capable of being calculated via the FFT) some of which give rise b 
much better integration formulas for approximating convolution integrals, when 
n > 1, than does f, * fi. 

II. INTEGRAL EQUATIONS 

Many problems in physics give rise to the consideration of ~-dim~sional integral 
equation of the type 

where k,, k,, and h are each known functions, and X and f are points in n- 
dimensional real space. In (4) the range of integration has been deleted; it may be ah 
of ~-dimensional space, but it can often be approximated by all values of i in an w  
dimensional cube having sides parallel to the coordinate axes. A fairly usual 
technique of integral equations is to pick points x 
such that 

1 ,..., 2,v, (where M, > 1) which are 

i.s a good approximation to 

when 2 equals 2Tja 
Then, instead of (4), one considers the system of linear equations 

fCzj> = NF 1 ,$ kI(z!) k2(3i;j - xl> .fCfr> + hizj), 

for j = 1, 2 ,..., N, . 
N. N. Bojarski, in particular, has dealt with computational aspects of solving 

systems such as (5). (See [ 11.) Bojarski noted that many Green’s functions are of the 
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form k,(q k2(T - 0, where generally k,(Q k& - 4 does have singularities. There are 
techniques which can often be used to remove the singularities. Often the cost of 
removing a singular part of k,(Q k2(X - 9 is to add a linear term inf(,-C~,) to the right 
hand side of (5), for some X,, in n-dimensional real space. Iff[, is an fj, this leads to 
a small variation on the problem appearing in (5). We shall sketch an argument using 
the FFT in the case that k,(o k2(.? - 0 has no singularities. 

Since (5) is a system of N, linear equations in N, unknowns one could solve it by 
inverting an N, X N, matrix, if this matrix is nonsingular. Such an inversion takes 
O(Nf) steps in general. The coefficient matrix in (5) is of the form 1-M where 1 is 
the identity matrix. Thus, formally, its inverse is I + M f M2 + . . . . Using a number 
of terms of this series is apparently equivalent to an iterative scheme in which the 
right hand side of (5) is repeatedly substituted back forfin the right hand side of (5). 
If K iterations are felt to be enough to ensure the accuracy desired then a solution 
takes O(KNf) steps to calculate accurately. This labor can often be reduced to 
O(KN, log N,) steps via the FFT algorithm, as we shall now see. 

One obvious choice of N, is NY for some integer N2 which is a positive integral 
power of 2. After resealing, we can choose the Z( to be the vectors (jrN;‘,..., j,N;‘), 
where each j, = 0, l,..., N2 - 1 for I = 1, 2 ,..., yt. These points all lie in the unit cube in 
n-dimensional real space, which shall be denoted by (IO, 1 I)“. If k,f and k, are 
periodic functions with period 1 in each variable the FFT may be used to calculate 
the right side of (5) in O(Nt log NJ steps. The periodicity condition is often 
unrealistic, but it can sometimes be forced to hold. For example : suppose f and k, are 
approximately zero outside of ([- f, $1)“. S ince we are then not concerned with using 
(5) to determinef for X, outside of ([- $, $1)” we might as well redefine@), k,(T), 
and h(f) to: (i) equal their old values if a7 is in ([- f, $3)“; (ii) be periodic with 
period 1 in each variable separately; (iii) vanish where not defined by (i) or (ii). The 
set of equations in (5) resulting from this redefinition should give usable values of 

f(Z) only if I is in ([- 4, +I)“, but the economy in computation that results from 
using the DFT can justify having to throw away some of the computed values of 
f(y). [Bojarski mentioned in a private conversation that he has developed a 
technique, applicable to problems of electromagnetic and acoustical scattering, which 
produces smooth integrands having compact support (so no discontinuities need be 
introduced in applying the above redefinition). This could increase accuracy 
considerably ; see Section VI.] 

111. THE DFT, LPT, AND THE FFT 

The DFT can be defined for all complex functions f detined on Ll. The DFT 
transforms each such function f(3) into a complex function .@) on Lz defined by 

for all 2 in Li. 

f(Z) = N-” 2 f(y) exp(2riNjj. 2) 
FELG 

(6) 
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A derivation of the DFT which proves to be a good guide to defining other 
transforms is the following: Consider the inner product defined for all 
complex functions fi and f, on Li by 

0-l 7 $2) = c fief) m-1. 
fEL$ 

(Here the bar over fi denotes complex conjugation.) The N” functio 
?$-M2 exp(-2niN%. y) are orthonormal under the above inner product ; it foil~ws that 
they are also complete. Then for all complex functions S defined on Li 

for all J? in Li. Equation (7) is the basic identity associated with the DFT. 
In (6) substitute first fi then fi for f and multiply ~orrespoudi~g sides of the 

resulting equation together obtaining 

which we define to be f, * fi. We note, also that 

Ji;(x) = N-“(f(y), exp(-2niN$. 9)). ilO> 

In effect, above, one is doing part of the theory of square summable functions on a 
set of Nn well distributed points in the unit cube. The purpose of this “abstract 
harmonic analysis” is, from our present standpoint, to approximate numerically some 
of the corresponding quantities for complex functions defined on (10, 
Lz is an Abelian group under component-wise addition followed by r 
one. easonable questions are : Why choose the group LL ? 

The idea behind defining the lattice point transforms is thi 
multi-dimensional integration it is known that very well distri 
Li exist which have many fewer elements than Lz, but which are such that the 
average value on G of each of a large class of integrands can be expected to be 
nearly as close to the value of the integral as is the average value on L;. The ability 
to deal with fewer points of evaluation in order to (a~proximateiy~ solve (4) re 
the labor greatly. 

Also, for integral equation such as (4), there is an additional advantage in solving 
for values off at the points of a subgroup G of Li. Set i'l4 equal to iV” divided by the 
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order of G. Let the factor group Li modulo G be represented by the cosets ~7~ + G, 
where j= 1, 2,..., 44. Then for each gk in G the following approximate identity holds: 

f& + &A 2 (order of G)- ’ 2 k, Ml> f( &> f( &I k2@ + & - &> + Wj + &A. 

This relation allows for an interpolation off (supposed to be determined accurately 
on G) onto all of the points L,f,. (One reason for requiring G to be a subgroup of Li 
is that the minimal number of translates of G covers Li.) 

Let U be any element of Li such that 6, U;..., (N - l)r7 are distinct ; i.e., the cyclic 
group C(G) generated by ~7 is of order N and C(5) is therefore isomorphic to Li (as a 
group) under the mapping kz7 --f kN- *. We proceed making definitions motivated by 
this isomorphism. An inner product can be defined for all complex functions f,(y) 
and&(y) defined on C(5) by 

Set [zJ~*= r7. V. The N functions, N-l’* exp(-2niN-’ 1 z.?I-~~. j$ for each 2 in 
C(U), are a complete orthonormal set of functions defined on C(g). Recalling (10) we 
define a transformation on the complex functions detined on C(6) by 

j’(x) = N-‘(f(y), exp(--2ziN-’ ) v I-*2 * 7)). 

Writing this out we see 
N-l 

(11) 

f(k’(kv) = N-’ c f(E) exp(2dV’Zk). 
l=O 

(12) 

The Lattice Point Transform (LPT) off with respect to V. We call theygiven in 
(11) and (12) the Lattice Point Transform (of complex functions f defined on C(c)). 
If f is a complex function having a domain which includes C(6), the Lattice Point 
Transform off with respect to V is the (uniquely defined) Lattice Point Transform of 
the function f restricted to C(6). 

Suppose thatf is a complex function on C(U). Defining functions g and h on Lh by 

g(kN- “) = f(k5) and h(lN- ‘) = j‘@), 

it becomes apparent that h(lN-*) =7(E) is the l-dimensional DFT of g(kN-‘). Thus 
the Lattice Point Transform has an inverse and the l-dimensional FFT algorithm can 
be used to calculate yin 0(-N log N) steps if N is a power of 2. Given two complex 
functions f, and f2 defmed on C(g), define g, and g, in analogy with g above. From 
(12) we see that 

.%.)J;z(Js) =i,(w-‘1 NkN-‘1 
N-l 

EN-IX 

I=0 i( 

N-’ >I g,(lN-’ - kN-‘)) g,(kN-I)) exp(2niN-Ilk); (13) 
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thus, the inverse Lattice Point Transform ofT$. is 

DEFINITIONS. Par any pair of complex functions f, and f, defined on C(6) we 
define.,!‘, 0 fi by 

If f, and f, each have a domain including C(5) then fi @ fz is defined to be 
the @ product of the respective restrictions to C(g). 

From what has been said f, @ f2 can be calculated in O(Nlog N) steps if l%i is a 
power of 2. In what follows we shall present the case for regarding J-, 0 fz, for 
appropriate 6, as a good quadrature formula for approximately calculating the 
convolution integral of fi and f2. Note @ depends upon the choice of 6. 

IV. A BACKGROUND ON FZ-DIMENSIONALINTEGRATION 

This section gives a sketch of that part of n-dimensional integration theory which 
motivated the definitions of the Lattice Point Transforms. Let S denote the class cd’ 
all subsets of ([O, 11)” of the form 

R = R(a,, b, ,..., aj, bj ,..., a,, b,) = 
.i=l 

where, for j = I, 2 ,..., II, the aj’s and the bj’s satisfy 0 < aj < bj < 1 and where 
denotes the Cartesian product. For any finite set X, let 1x1 denote the nu 
elements in X. 

DEFINITION. The discrepancy of a nonempty finite subset X of I” = ([ 
the supremum over all R in 5’ with a 1 = a2 = -. . = a, = 0 of 

/ fi (bj-aj)-lXnR/(/X/)-' /. 
j=l 

The discrepancy of a set X is therefore a real number and we denote it by 

Clearly 0 < D(X) < 1. The discrepancy of X is a measure of how well distri 
X is in I”. The lower the discrepancy the better distributed X is considered to be. 

For complex valued functions F defined in (IO, I])” there is a concept called the 
Vitali variation v’“‘(F) of F. (See [2, p. 1471.) If y1= I the Vitali variation agrees 
with the ordinary definition of the total variation of 6: on [O, 11. We say that a 

581/42/2-12 
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function F is of bounded Vitali variation on ([0, 11)” if vn)(F) ( fco. A function F 
is said to be of bounded variation in the sense of Hardy and Krause if the Vitali 
variation of F on ([0, 11)” is finite and if the Vitali variations of F restricted to each 
k-dimensional face of ([0, I])” are finite, for k = 1,2,..., IZ - 1. We shall denote the 
sum of these variations by V(F). 

LEMMA. Suppose F is defined on an open subset U of n-dimensional space which 
contains some R in S (cf. the definition of discrepancy). Then reach 

is continuous on U whenever 1 <j(l) < j(2) < . . . ( j(k) < n, the function which 
agrees with F on R and which is identically zero on the complement of R in ([0, 11)” 
is of bounded Hardy-Krause variation on ([0, 11)". Also, the Hardy-Krause 
variations of the truncations of F, corresponding to each R, in S such that R, c R, 
are uniformly-bounded. 

The proof of this technical lemma is omitted here. (A more detailed report is 
available from the author.) 

The basic result connecting the concepts of numerical integration, V(F), and D(X) 
is : 

THEOREM I. For all nonemptyfinite sets XC ([0, 11)” = I” 

F(p)dy- IX/-’ c F(Z) <D(X) V(F). 
.FEX 

For a proof of Theorem I see [2, p. 15 11. (The result there is sharper, as may be 
seen by noting that the discrepancy, in ([0, l])“, of the projection of X onto a k- 
dimensional face of ([0, l] ” is less than or equal to D(X), for k = 1,2 ,..., n - 1.) 

We next see that the set Li has discrepancy at least N-l. This follows since for 
each E satisfying 0 < E < (2N))‘, R(e, RN-’ -E, 0, l,..., 0, 1) has volume N-’ - 2~ 
and contains no points of Lz. Notice LG has N” points. It is known that there are 
sets S of exactly N points in (10, 11)” having discrepancy not much larger than N-l. 
Some of these sets having low discrepancy are sets of the form C(G) E Li. We shall 
next discuss such vectors 0; they are called “good lattice points.” S. K. Zaremba has 
been very active in these investigations regarding good lattice points: see [3-81. 

V. GOOD LATTICE POINTS 

A few preliminary comments : there appear to be several detintions of “good lattice 
points” in the literature. The basic requirement of course is that, where X = C(U), 
D(X) must be small if ~7 is to be a good lattice point. A disappointment is that there 
is, in general, no formula for producing good lattice points. Computer searches are 
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common and tables have been produced, see [9]. Much effort has been ex 
upon showing the existence of good lattice points, so that we know ahead of ti 
the computer search will be fruitful. For many physical applications probably n 
should equal 2 or 3 and N should ideally be a power of 2. The cases n = 2 and 3 
have been investigated, but the principal interest has been in dimensions ra > 5 where 
even Monte Carlo integration requires very many points. (Some applications in 
theoretical chemistry involve this many dimensions and more.) The values of N and V 
chosen for tables are usually picked so as to produce a sequence of optimally small 
values of D(C(5)); as it turns out, those N which are powers of 2 are usually not 
listed. Dr. S. Haber of the National Bureau of Standards has calculated a table of 
higher-dimensional good lattice points where each N is a power of 2. IIaber’s table is 
in the Appendix. (In [3] it is shown that good lattice points exist for all integers N, 
Nere we have assumed that N is a power of 2 because the FFT al~oritbms are most 
eflleient in this case. If the restriction of N to be a power of 2 should turn out to 
increase the integration error unacceptably it is possible, using algebraic tricks, to 
compute f @ g even when N is not a power of 2, as values of a convolution of two 
sequences each of length to a power of 2. Thus the computation can still be carrie 
out using the FFT.) For more about good lattice points see [ 10, 1 l]. 

DEFINITION. In [2], a definition of a good lattice point is given for the integer N 
and the dimension n. Provisionally we define a good lattice point for the inte 
and the dimension n to be a vector z7 in Li such that the discrepancies of C(D) and 
each of its translates (i.e., every set of the form X + C(U) for all ~-dimensional vectors 
2) are less than 

c,(log N)“N- r, 04) 

where, if N > 3, 

c, < (4n23n+1)(5n + I). (If3 

The actual definition will be given in the Section VI where the definition will be 
better motivated. (The provisional definition is a consequence of the alternate 
definition. The bound in (15) is obtained by following through the proof of our 
Theorem I given in [2] and using the bound on the constant in the Erdijs Turan 
Koksma Theorem on page 116 of [2]. Professor Niederreiter has recently informed 
me that some of his newer results would improve these estimates, see [ 12-14J. 

VI. PERIODIC INTEGRANDS 

Good lattice points were apparently first discovered in an attempt to (numerically) 
integrate functions which are periodic with period one in each variable and are quite 
smooth. Suppose j’= &arexp(2zi~. X), where I = (xi ,..., x,), 6 runs over all n- 
tuples with integral coordinates, each al; is a complex number, and & ]aEj < co. 
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I” denote ([0, I])“. Since f is Lebesgue integrable on I” Jr, f(f) dit = a,. Using 
Cr ( aK] < co, it is easily seen that 

where the prime indicates that the sum is over all nonzero E such that 6 . E is an 
integer. Obviously, a bound for the absolute value of the error in numerical 
integration is C’ ] al;]. 

DEFINITION. For each n-vector of integers, 1, set, 

R(E) = fi (max{ 1, ]kj]}). 
j=l 

Let a be an integer, (r > 1. If enough partial derivatives offwith respect to x, ,..., x, 
exist and are continuous on P, then each ]aE] < ~(a)@$))-~, where c(a) > 0, is 
independent of k. In these cases one should apparently choose G such that 

is small (the prime has the same meaning as before). One approach is to find vectors 
fi such that F. U is an integer implies that either /! = ii or R (I;> is comparatively large, 
i.e., R(E) > 4(N), where &V) has order of growth close to that of the function A? 

S. K. Zaremba defines good lattice points to be vectors V for which the associated 
number 4(N) is at least as large as (n - l)! N(2 log N)‘-“. We now give the definition 
of a good lattice point from inequality (5.32) of [2]. 

DEFINITION. The vector 0 in Li is a good lattice point if 

F” (R(k))-’ < 2N-‘(5 log N)“, 

where the double prime indicates that we sum only over those nonzero k such that 
each component of I? has absolute value less than N and also i?. d is an integer. 

(From this definition, inequalities (14) and (15) can be shown to follow, In this 
case, as with the Zaremba definition, good lattice points to be good for the 
integration of periodic functions. Obviously using Zaremba’s definition of a good 
lattice point JJ’(R (I;>)- ’ is small, so the two concepts are close.) 

Suppose that f is of the form f = JJr; aE exp(2niE. f), where E varies over all n- 
tuples of integers and where ]aE/ < M(R(l))))-” for two real constants M > 0 and 
LT > 1. It is shown on page 157 of [2] that: 
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THEQREM II. If if is a good lattice point in OUT selzse, then 

N-l 
N-l f(jU) - j f(T) d3 < M(l + 21(a))“(l + 2*(5 log N)““) N-“, 

j=O I” 

where [ denotes the Riemann Zeta Functiort. 

Thus, the numerical integration of periodic functions using good lattice points 
exploits the “amount of differentiability” actually present inf, whatever that arn~~~t 
may be. For the sake of comparison consider that 

I f(Z) d2- N-” c f(P) = - c aNas 
I” FEL,; F#ij 

where Nk= (Nk i ,..., Nk,). The integration error is then potentially at least as large as 

MN-” 

using Nn points. The error using a good lattice point is O((log N)“N- ‘)u using only N 
points1 

VII. INTEGRATION ERRORS AND INTEGRAL EQUATIONS 

Suppose that 5 E LL is a good lattice point. Suppose that fi(iT> = h,(.? f ($,..., 1)) 
and f&2) = h,(Z + (j,..., $)), where h, and h, are functions defined on n-dirne~si~~~~ 
real space each of which satisfies the hypotheses on F in the Lemma of this paper, for 
all R in S having each aj > $ and every bj < i, for j= 1,2,..., IE. Consider from now on 
instead offi and f2 truncations of f1 and f2 to ([- $, a]y. Then h I and h, are trun- 
cated to ([f, a])*. We further change h, and h, by keeping their (new) de~nitio~s on 
1” but extending then from P to all of n-dimensional real space so as to make them 
periodic with period one in each variable. By a change of variables 

i,,-l,4,1,411” 
fl(i) f2(x - Q dl= j h,Q h&Y - f) 

I” 

for each X in 1”. 
Each integrand on the right side of the equation above vanishes outside of some 

R, 2 ([a, a])‘, where R, is in S. By the Lemma, there exists M > 0 such that is a 
bound for the Hardy-Krause variation of these integrands. It follows, using 
Theorem I, that 

for k=Q, l,...,N- 1. 
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Similarly, 

h, * h,(.f) - I h,(f) h2(Z - f) di < MD(L;), (17) I” 

for all 1 in L;. Recall D(Li) > N- ‘. 
AS in Section III let the ~j + C(fi) be a set of representatives for the cosets of LG 

modulo C(z?), for j = 1, 2 ,..., N’-‘. 
Suppose that one approximately solves an integral equation of type (4) by using 

the method outlined in Section II where: (i) for some V in Ls the fl in (5) are the 
vectors of the form r- (&..., ) ) for all 17 in C(g); (ii)f, = k, f; and (iii)f, = k,. If K 
iterations are felt to be necessary, the number of steps required to approximately 
calculate f at all of the points 3, is O(KN log N). If after this calculation one wishes 
to know f at all of the points of the form T-- (+,..., )), where Tis in LG, one may take 

f, = k, f and set f2(o equal successively to k,(cYj + i) for j = 1,2,..., N”-‘. Since to 
compute h, * h, takes O(N log N) steps, to approximately compute the integrals in 
(16) for all N” values of isj + ki? takes O(Nn log N) steps. For K much less than NH-‘, 
this says that one can approximate fat all of the points i-- (i,..., i) in O(N” log N) 
steps instead of O(KN” log N) steps, with what should be close to the same accuracy 
as is obtained using the DFT. 

VIII. PERIODIC INTEGRANDS IN INTEGRAL EQUATIONS 

If the integrand is periodic the previous analysis holds except that the accuracy of 
both sets of integration formulas (using C(F) and using Li) is enhanced. Therefore, it 
may be possible to obtain good accuracy while using fewer than N points of 
evaluation. How might one determine f at fewer than N points and then extend this 
determination off to all of Li ? 

Notice that L$,, c L!$,l c_ . aa . Using a good lattice point in L&, one could, after a 
number of iterations, approximately calculate f fist at all points of L&, - (i,..., 4) and 
then at all points of L& - (l/2”“,..., l/2*+‘) - (i,..., Q) using the techniques of the 
previous section. Together these two sets of points comprise L&+, - (&..., 4). 
Continuing, one could approximate f at the points of Li,+j - (+,..., $). for any j. The 
method discussed at the end of Section VII takes O(Nn log N + KN log N) steps. The 
method just described takes O(N” log N + KN, log N,) steps, where the K iterations 
are each carried out using N, <N points. When K > N”-l, the savings in the number 
of steps could be important. 

APPENDIX: HABER'S CALCULATION OF 
SOME GOOD LATTICE POINTS 

S. Haber conducted a computer search for good lattice points in dimensions 2 to 8 
when N is a power of 2. Haber looked only at vectors of the form (1, a, a2,.,., a”-‘) 
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as potentiai good lattice points. Reproduced below are the best values of a which he 
found for each pair (n, IV) considered. 

The table below is self-explanatory, except for the columns labeled error. The error 
in these tables is the maximal integration error which could occur in integrating 
function of the form Cr; ar exp(2niE. X) with each la& < (R(E))))-2, using the Mice 
point (I, a, a’,.,., a”-’ ). The last two digits in the error columns refer to a factor of 1 
to the indicated power. 

The author has available a report with slightiy more details. e is interested in 
obtaining feedback about applications of the method, especially since the method 
should be capable of greater refinement in specific circ~ms~an~es~ 

N a Error N a Error 

4 
8 

16 

32 
64 

128 

256 
512 

1024 
2048 
4096 
8192 

16384 
32768 
65536 

131072 

4 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 
8192 

16384 
32768 
65536 

131072 

9 
21 
29 
99 

189 
399 
849 

1787 
3453 
6279 
5133 

21621 
34613 

3 
21 
21 
39 

107 
493 
941 

2023 
539 

2031 
11579 
18793 

2171 

n=2 n=3 

0.387805+01 4 1 0.187716+02 
0.108049$01 8 3 0.856411+01 
0.372186+00 16 5 0.350605+-O! 
0.123207+00 32 11 0.141611+01 
0.315720-01 64 5 0.563185+00 
0.952037-02 128 41 0.175298$00 
0.248180-02 256 37 0.590787-01 
0.721157-03 512 I23 0.196052-01 
0.214383-03 1024 173 0.669393-02 
0.688732-04 2048 753 0.203 15 3-02 
0.165999-04 4096 1271 0.884861-03 
0.439584-05 8192 2835 0.210598-03 
0.119209-05 16384 1163 0.199447-04 
0.402331-06 32768 8655 0.205934-04 
0.119209-06 65536 22201 0.591576-05 
0.298023-07 131072 42445 0.233948-05 

n=4 5 

0.837706+02 4 1 0.362219+03 
0.416424+02 8 3 0.J80840+03 
0.202653102 16 5 0.898656+02 
0.981764+01 32 5 3.433930+02 
0.382833+01 64 13 0.201308+02 
o.t54038+01 128 3 0.962822-tOI 
0.613026+00 256 21 0.405588+01 
0.252041+00 512 151 0.181237+01 
0.912730-01 1024 363 0.734555+00 
0.384578-01 2048 659 0.303642+00 
0.131653-01 4096 661 0.133277+00 
0.395443-02 8192 3333 0.482314-01 
0.157484-02 16384 2105 020528$-O! 
0.618219-03 32768 145 0.880437-02 
0.189885-03 65536 18351 0.303666-32 
0.645667-04 131072 2771 0.108038-02 
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N a Error N a Error 

4 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 
8192 

16384 
32768 
65536 

131072 

4 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 
8192 

16384 
32768 
65536 

131073 

n=6 n=7 

0.155717+04 
0.777900+03 
0.388402+03 
0.193766+03 
0.937380+02 
0.441573+02 
0.217294+01 
0.963975+01 
0.461733+01 
0.212211+01 
0.894023+00 
0.355784+00 
0.161691+00 
0.670017+01 
0.294434-01 
0.139112-01 

4 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 
8192 

16384 
32768 
65536 

131072 

11 

123 

491 
443 

1271 
67 

7011 
4335 

24565 
33269 

; 
11 
35 
99 
93 

141 
443 
595 

2153 
6957 

453 
25219 
11495 

n=8 

0.286732+05 
0.143362+05 
0.716763+04 
0.358321+04 
0.178947+04 
0.894503+03 
0.448897+03 
0.216616+03 
0.102948+03 
0.503627+02 
0.253335+02 
0.114092+02 
0.563589+01 
0.244354+01 
0.120873+01 
0.586658+00 

5 
5 

11 
5 

99 
93 

141 
683 

1159 
3091 
2037 

453 
4855 

33269 

0.6683 17t04 
0.334092+04 
0.166999+04 
0.834552+03 
0.414317+03 
0.204352+03 
0.997137+02 
0.490582-t-02 
0.225562+02 
0.104945+02 
0.507417+01 
0.237492+01 
0.113009+01 
0.457384+00 
0.193287+00 
0.926493-01 
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